Science Quiz / Theorems In Calculus

Random Science Quiz

Can you name the Theorems In Calculus?

 Plays Quiz not verified by Sporcle

How to PlayForced Order
Support Sporcle.
Go Orange.
Score 0/9 Timer 06:00
Statement DescriptionTheorem
Let C be a simple closed curve and f differentiable from R^2 to R^2, then Int(f,C,s) = Int^2(curl(f), I(C),S) where I(C) is the interior of C
Let H be a surface in R^3 with a boundry d(H), a simple closed curve. Let f be differentiable form R^3 to R^3, then Int(f,d(H),s) = Int^2(curl(f),H,S)
Let H be a surface in R^3 which encloses a volume, I(H). Then for f differentiable from R^3 to R^3, Int^2(f,H,S) = Int^3(div(f),I(H),V)
Let f:C->C be holomorphic, then for all paths p, Int(f(z),p,z) = 0.
Let F:C->C be holomorphic in D and let p be a path in D connecting z0 and z1. Then Int(F'(z),p,z) = F(z1)-F(z0)
Let f be continuous on a simply connected domain. Then the following are equivalent; i) If a path p is closed then Int(f(z),p,z) = 0, ii) there exists F(z), holomorphic, such that
Let f be holomorphic in A and let p be a closed curve in A. Suppose we can continuously deform p to q in A. Then Int(f,p,s) = Int(f,q,s)
Let C be a simple closed curve. Let f be holomorphic over C and its interior I(C) except for n+1 singularities z(0),z(1),...,z(n). Then, Int(f(z),C,z) = 2*pi*sqrt(-1)*SUM(Res(f,z(i
Let x be an isolated singularity of f. Then there exists E>0 such that f is holomorphic in the E-Neighbourhood of x when f has the representation, f(z) = SUM(a(k)*(z-x)^k, k=...-1,

From the Vault

Famous Back-Up Groups

by Hejman

Music 5m
A headliner is only as good as the musicians they've got backing them.
Remove Ads.
Support Sporcle.
Get the best of Sporcle when you Go Orange. This ad-free experience offers more features, more stats, and more fun while also helping to support Sporcle. Thank you for becoming a member.

Show Comments

Extras

Top Quizzes Today


Score Distribution

Your Account Isn't Verified!

In order to create a playlist on Sporcle, you need to verify the email address you used during registration. Go to your Sporcle Settings to finish the process.

Report this User

Report this user for behavior that violates our Community Guidelines.

Details: