Origins of mathematical notation

Random Science or math Quiz

Can you name the first mathematicians to use the given notation?

Quiz not verified by Sporcle

embed
 plays        
How to Play
NotationOriginatorEarliest known usage
Bra-ket notation (⟨| , |⟩) in physicsA New Notation for Quantum Mechanics, 1939
Universal quantifier symbol (∀)Untersuchungen ueber das logische Schliessen, 1935
Perpendicularity sign (⊥)Cursus mathematicus, 1634
Infinity symbol (∞)De sectionibus conicis, 1655
Exclamation mark (!) for factorialÉléments d'arithmétique universelle, 1808
Greek letter pi (π) for the constant 3.1415...Synopsis palmariorum mathesios, 1706
Curly d (∂) for partial derivativesMemoire sur la manière de distinguer les maxima des minima dans le Calcul des Variations, 1786
Elongated 'S' (∫) for integralsAnalyseos tetragonisticae pars secunda, 1675
Big-O notation for asymptotic boundsAnalytische Zahlentheorie, 1894
Empty set symbol (∅)Éléments de mathématique, 1939
Less than and greater than symbolsArtis Analyticae Praxis ad Aequationes Algebraicas Resolvenda, published 1631
Square 'tombstone' symbol (∎/□) for the end of a proof20th century
Equals sign (=)The Whetstone of Witte, 1557
NotationOriginatorEarliest known usage
Three horizontal lines (≡) for congruence of integersDisquisitiones arithmeticae, 1801
Vertical bars for the absolute value of x (|x|)Zur Theorie der Potenzreihen, 1841
Square root/radical symbol (√)Die Coss, 1525
Nabla symbol (∇) for vectorial derivatives, etc.19th century
f(x) for a function f of a variable xCommentarii Academiae Scientiarum Petropolitanae, 1734
Stylized Greek letter epsilon (∈) for 'is an element of'Arithmetices prinicipia nova methodo exposita, 1899
Addition (+) and subtraction (-) signsBehende und hüpsche Rechenung auff allen Kauffmanschafft, 1489
Obelus (÷) for division, therefore symbol (∴)Teutsche Algebra, 1659
Multiplication symbol (×); plus-minus signClavis Mathematicae, published 1631
Prime (') notation for total derivativesThéorie des fonctions analytiques, 1797
Curly braces ({, }) for enclosing elements of setsEin Beitrag zur Mannifaltigkeitslehre, 1878
Vertical bars around the entries of a matrix for its determinant Cambridge Mathematical Journal, Vol. II, p. 267-271, 1841

Friend Scores


  Player Best Score Plays Last Played
You You haven't played this game yet.

You Might Also Like...

Extras